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ABSTRACT   36 

 37 

Aim: Conservation plans often struggle to account for connectivity in spatial prioritisation 38 

approaches for protecting migratory species. Protection of such species is challenging because their 39 

movements may be: uncertain and variable, span vast distances, cross international borders, and 40 

traverse land and sea habitats. Often we are faced with small samples of information from various 41 

sources and collection of additional data can be costly and timely. Therefore, it is important to 42 

evaluate what degree of spatial information provides sufficient results for directing management 43 

actions. Here we develop and evaluate an approach that incorporates habitat and movement 44 

information to advance the conservation of migratory species. We test our approach using 45 

information on threatened loggerhead sea turtles (Caretta caretta) in the Mediterranean.  46 

 47 

Location: The Mediterranean Sea 48 

 49 

Methods: We use Marxan, a spatially explicit decision support tool for selecting priority 50 

conservation areas. Four approaches with increasing amounts of information about the loggerhead 51 

sea turtle are compared, ranging from: i) the broad distribution, ii) multiple habitat types that 52 

represent foraging, nesting and inter-nesting habitats, iii) mark-recapture movement information, to 53 

iv) telemetry-derived migration tracks.  54 

 55 

Results: We find that spatial priorities for sea turtle conservation are sensitive to the information 56 

used in the prioritisation process. Setting conservation targets for migration tracks altered the 57 

location of conservation priorities, indicating that conservation plans designed without such data 58 

would miss important sea turtle habitat. We discover that even a small number of tracks makes a 59 

significant contribution to a spatial conservation plan if those tracks are substantially different.  60 

 61 

Main Conclusions: This study presents a novel approach for improving spatial prioritisation for 62 

conserving migratory species. We propose that future telemetry studies tailor their efforts towards 63 

conservation prioritisation needs, obtaining spatially dispersed samples over quantity. This work 64 

highlights the valuable information that telemetry research contributes to the conservation of 65 

migratory species.  66 

 67 

 68 

 69 



3 
 

INTRODUCTION  70 

 71 

The increase in anthropogenic activities over the last two centuries has disrupted the movement of 72 

many organisms (Bolger et al., 2008; Harris et al., 2009). Migration and movement is essential for 73 

the persistence of many terrestrial and marine animals. Such species rely on movement between 74 

specific habitats or regions for reproduction, feeding, or thermal regulation (Alerstam et al., 2003). 75 

The destruction of movement pathways, and threats to individuals that move (e.g. bycatch), affect 76 

the fitness and survival success of migratory species (Beger et al., 2015). Protecting mobile species 77 

presents a great challenge due to the vast distances such animals often traverse, sometimes across 78 

international borders and in other cases between land and sea habitats (Martin et al., 2007). Yet, 79 

most conservation plans fail to incorporate the spatial connectivity that is needed to adequately 80 

protect migratory species (Martin et al., 2007; Runge et al., 2014).   81 

 82 

Sea turtles are an example of an ecologically, economically and culturally important globally 83 

threatened migratory species group (IUCN, 2013). The thousands of kilometres these species travel 84 

between nesting and feeding habitats makes them highly vulnerable to an array of anthropogenic 85 

threats (Shillinger et al., 2010; Mazaris et al., 2014). These threats include, disturbance to nesting 86 

beaches from coastal development and sea level rise (Fuentes et al., 2011; Katselidis et al., 2014), 87 

turtle egg harvesting (Koch et al., 2006; Wallace et al., 2011), incidental catch in fishing gear 88 

(Lewison et al., 2004; Peckham et al., 2007), collision with boats, and the digestion of plastic 89 

material (Casale & Margaritoulis, 2010). Contributing to the vulnerability of marine turtles is their 90 

long life spans, reproductive age (e.g. loggerheads ~ 40-50 years old; Casale, 2011; Scott et al., 91 

2012a; Avens & Snover, 2013) and different male versus female breeding patterns (Schofield et al., 92 

2013a). Given the need for sea turtle protection and conservation, large-scale conservation plans 93 

that explicitly incorporate their complete habitat needs and migratory behaviours are lacking. 94 

 95 

Previous sea turtle conservation efforts have primarily focused on protecting nesting sites (Casale & 96 

Margaritoulis, 2010; Mazaris et al., 2013). The central aim of these recovery efforts has been to 97 

protect female sea turtles and their nests, with little focus on males and the younger developmental 98 

stages (Schofield et al., 2013b). However, while some sea turtle populations are recovering 99 

(Tapilatu et al., 2013; Lamont et al., 2014), some continue to decline (Stewart et al., 2014; Weber et 100 

al., 2014), suggesting that there are limitations to a conservation approach that focuses on only a 101 

sub-set of the life-history stages. Population models indicate that conserving sea turtle nesting 102 

habitats alone without considering other key habitats is insufficient for species recovery (Heppell et 103 

al., 1996; Lazar et al., 2004). Currently, there are limited management actions (e.g. turtle exclusion 104 
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devices TEDs) to conserve sea turtles within marine waters and only recently have conservation 105 

efforts been directed towards protecting offshore sea turtle populations and their migration corridors 106 

(Pendoley et al., 2014; Seminoff et al., 2014; Baudouin et al., 2015). Successful conservation 107 

planning for sea turtles must explicitly protect all the life-stages and link their terrestrial and marine 108 

habitat requirements (Beger et al., 2015). One of the major impediments for minimising mortality in 109 

the sea is that information on the offshore distribution and movements of sea turtles is limited 110 

(Casale et al., 2007a).  111 

 112 

Various methods have been trialled to understand sea turtle movement in offshore habitats. Since 113 

the 1950s, the most common method has been mark-recapture approaches, where tags are affixed to 114 

sea turtles at nesting sites and their location of recapture is documented (Carr & Giovannoli, 1957; 115 

Hendrickson, 1958; Caldwell et al., 1962). Mark-recapture methods have contributed to our 116 

knowledge of sea turtle migratory extent, links between release and capture sites (recaptures at sea; 117 

Casale et al., 2007b), nesting populations and growth rates (recaptures at the same nesting beaches; 118 

Monk et al., 2011). However this method is unable to provide information about entire migratory 119 

paths and remains labour-intensive (Stewart et al., 2013), characterised by low recapture rates 120 

(Avens & Snover, 2013) and slow knowledge accumulation (Godley et al., 2008). In recent 121 

decades, with the expansion of telemetry systems such as radio trackers, satellite transmitters and 122 

GPS loggers, tracking programs have proliferated (Godley et al., 2008; Hussey et al., 2015). These 123 

technologies actively improve our understanding of sea turtle migration pathways at sea (Pendoley 124 

et al., 2014; Stokes et al., 2015). While there is an increasing emphasis on telemetry to improve our 125 

understanding of sea turtles distribution, physiology and behaviour (e.g. Hochscheid et al., 2007; 126 

McCarthy et al., 2010), there is comparatively less attention paid to how this knowledge can 127 

improve management and identify conservation areas. Recent tracking studies link adult foraging 128 

grounds to existing MPAs and identifying new areas for protection (e.g. Scott et al., 2012b; 129 

Schofield et al., 2013a), however analyses that link habitat and movement information into spatial 130 

conservation prioritisations (Beger et al., 2015) remain scarce.  131 

 132 

Sea turtle tagging and telemetry programs are rarely explicitly shaped by conservation planning 133 

objectives, and their execution is logistically difficult and expensive (satellite transmitters range 134 

from US$2000-5000 each; Godley et al., 2008; seaturtle.org, 2013). Such information often remains 135 

in the sea turtle behaviour and ecology literature without any attempt to use it for conservation 136 

(Godley et al., 2008). Recent studies that have used telemetry to inform and improve conservation 137 

have been restricted to examining species movements (Stokes et al., 2015) and building distribution 138 

models (Schofield et al., 2013a). Presently, attempts to use sea turtle migration information to 139 
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enhance systematic conservation planning remain scarce (Beger et al., 2015), and the sensitivity of 140 

conservation outcomes to the number and quality of tracks used has never been assessed. 141 

Furthermore, conservation plans are being made for mobile species such as sea turtles often without 142 

considering the potential input that migration information could contribute (Martin et al., 2007; 143 

Runge et al., 2014).  144 

 145 

Here, we aim to develop and test approaches for incorporating information on habitat use and 146 

migration into conservation prioritisation for migratory species. The Mediterranean Sea and its 147 

endangered loggerhead sea turtle Caretta caretta (Linnaeus, 1758; IUCN, 2013) population provide 148 

an excellent case study for tackling this issue. We assess the potential impact of data limitations on 149 

conservation prioritisation outcomes by examining the value of different kinds of spatial 150 

information for identifying the location of areas that are a priority for sea turtle conservation.  151 

 152 

 153 

METHODS 154 

 155 

Study area and database  156 

 157 

The study area was the entire Mediterranean Sea to a seafloor depth of 1,000 m1. We divided the 158 

resulting shallow Mediterranean Sea including coastal land areas with nesting beaches into planning 159 

units of 10 x 10 km, consistent with EU guidelines (Directive 2007/2/EC) and other large-scale 160 

regional planning studies (e.g. Mazor et al., 2014). 161 

 162 

We assembled available sea turtle data (for data sources see Appendix 1) to create maps of three sea 163 

turtle habitat types (Fig. 1a).  164 

 165 

Nesting habitat: First, the locations of 131 loggerhead nesting beaches were collated from over 166 

thirty published resources (Table S1 in Supporting Information). We did not aim to predict potential 167 

additional (unreported) locations of beaches using species distribution modelling methods because 168 

female sea turtles display natal homing and factors that affect their site selection within this homing 169 

range are not well known (Garcon et al., 2009). Planning units along the beach within a 10 km 170 

radius from each known nesting site were designating as nesting beach habitat. We note here that 171 

we did not aim to differentiate between major and minor nesting sites, but rather map the majority 172 

                                              
1 Areas below 1,000 m were excluded because: a) most important foraging habitats for sea turt les in the Mediterranean Sea are 
generally classified in shallow waters along the continental shelf, b) anthropogenic threats are mainly concentrated along th e coast 
and c) the General Fisheries Commission for the Mediterranean (GFCM) recommended the prohibit ion of towed dredges and trawl 
nets fisheries at depths beyond 1000 m (Recommendation GFCM/2005/1 on the ‘‘management of certain fisheries exploiting 
demersal and deep-water species’’) which has been adopted by the EU (Regulation 1967/2006). 
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of nesting sites (defined as sites averaging ≥ 20 nests per year to capture smaller nesting beaches) to 173 

represent the distribution of sea turtles.    174 

 175 

Inter-nesting habitat: We created inter-nesting habitat data using a 10 km buffer from nesting 176 

beaches (Tucker et al., 1995; Waayers et al., 2011). These neritic areas are important habitat for 177 

female sea turtles during the time between laying clutches (Schofield et al., 2010) and for juvenile 178 

turtles making their way to the ocean post-hatching (Bolten, 2003).  179 

 180 

Foraging habitat: Given that sea turtle foraging habitat is not yet fully mapped in the 181 

Mediterranean, we modelled foraging habitats using MaxEnt (Version 3.3.3k; 182 

http://www.cs.princeton.edu/~schapire/maxent/ Phillips et al., 2004, 2006; Appendix S1 in 183 

Supporting Information). This model is intended as a simplified baseline representation of foraging 184 

grounds in the Mediterranean Sea as it incorporates location data from both adult and juvenile sea 185 

turtles. The MaxEnt species distribution modelling software models occupancy across space using 186 

presence-only species data. We collated sea turtle sighting locations from EurOBIS (2014), several 187 

scientific papers and location and telemetry data contributed by seaturtle.org (2013; Table S2). 188 

Telemetry data points that were spatially aggregated exhibiting high sinuosity on the continental 189 

shelf (defined by the 200 m isobaths; Kallianiotis et al., 2000; Sardà et al., 2004) were included, 190 

because such patterns indicate foraging (McCarthy et al. 2010; Dodge et al. 2014). Thus, transiting 191 

movements (and those off the continental shelf) were excluded, resulting in a total of 9,058 data 192 

points (see Fig. S1). These point data were combined with 22 environmental variables (for a list of 193 

variables see Table S3). The resulting model was validated by a random sub-sampling method that 194 

was repeated 15 times and used 25% of the data (Phillips et al., 2004, 2006). To create a 195 

distribution map of suitable foraging habitat we used the tenth percentile training presence logistic 196 

threshold (>0.36). By using this threshold, we defined suitable habitat to include 90% of the data we 197 

used to develop the model. Our resulting map of foraging habitat was consistent with findings by 198 

localised studies that identified foraging grounds in the region (Broderick et al., 2007; Casale et al., 199 

2013; Stokes et al., 2015).  200 

 201 

Migration information: For our analyses of loggerhead turtle migration movements we compiled 202 

available satellite tracking data from EurOBIS (http://www.eurobis.org/ 2014) and seaturtle.org 203 

(http://seaturtle.org/; Table S4). A total of 34 individual tracks were collected from a variety of 204 

sources across the Mediterranean Sea and were used in this study (Fig. 1b – individual tracks cannot 205 

be shown due to data protection; Appendix S3). More tracking data should be obtained if this 206 

http://www.cs.princeton.edu/~schapire/maxent/
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methods is to be used to robustly assign priority conservation areas for the regions sea turtle 207 

population.  208 

The value of sea turtle information for conservation 209 

 210 

We examined the value of sea turtle information for conservation using scenario exploration with 211 

Marxan, a commonly used decision-support tool, and its derivative algorithm, Marxan with 212 

Connectivity (Beger et al., 2010a; 2010b). For each scenario (approach), we developed a set of 213 

spatial plans that met our conservation targets and connectivity objectives for the least possible cost 214 

(Ball et al., 2009). Below, we describe each planning approach highlighting the incorporation of 215 

additional data layers. To focus on the effects that different kinds of information have on spatial 216 

priorities, we kept the number of iterations (1000 runs) and the associated cost (equal cost per 217 

planning unit) consistent in all planning approaches.  218 

 219 

The changes in spatial priorities signify the potential knowledge gained from investing in additional 220 

and more complex information. For new information to be useful for planning, it must improve our 221 

ability to make a decision or modify a plan (Maxwell et al., 2015). In the context of this analysis, 222 

we want to explore what information helps us better identify conservation priority sites that protect 223 

the entire turtle life cycle. First, we prioritise using the extant distribution range of sea turtles 224 

(Approach 1 - Range), then by multiple habitat types (nesting, inter-nesting and foraging,) 225 

(Approach 2 - Habitats), followed by movement information extracted from mark-recapture data 226 

(Approach 3 - Mark Recapture) and finally, the incorporation of satellite tracking data (Approach 4 227 

- Tracks). Within Approach 4, we tested the influence of the number of tracks used on resulting 228 

conservation priorities. Our conservation objectives to protect a given percentage of sea turtle 229 

spatial distribution (targets) varied according to approach (Table 1; Appendix S2). 230 

 231 

We parameterised Marxan both without representing any connections between planning units 232 

(Approach 1 - Range, and Approach 2 - Habitats; Ball et al., 2009; Table 1) and by incorporating 233 

ecological connectivity into the objective function (Approach 3 - Mark-Recapture and Approach 4 -234 

Tracks; Beger et al., 2010a; 2010b; Table 1). When including connectivity, we calibrated the 235 

Connectivity Strength Modifier (CSM - for methods see Beger et al., 2010b) to 50 (Fig. S2). 236 

 237 

Approach 1 - Range  238 

In this approach we represented the overall distribution of loggerhead sea turtles by a single broad 239 

distribution map in the Mediterranean Sea, combining nesting, inter-nesting and foraging habitat 240 

data into one single distribution range (target was 20% of the species distribution) This is a basic 241 
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approach that is commonly used in conservation planning given the normal paucity of fine-scale 242 

spatial habitat data (e.g. IUCN distribution ranges).  243 

 244 

Approach 2 - Habitats  245 

For this approach we set specific conservation targets for nesting (target 60%), inter-nesting (target 246 

40%) and foraging habitat (target 20%), simulating a situation where the three main habitats used 247 

by turtles are known. Dividing the broad distribution range into specific habitats with set targets 248 

ensures that priority conservation areas will be selected for each habitat type.  249 

 250 

Approach 3 - Mark-recapture  251 

Mark-recapture studies define at least two points on a turtle’s travel, its start (tagging location) and 252 

end points (recapture location). To represent this type of information in conservation planning, we 253 

targeted the three habitats used by turtles while also ensuring connectivity between nesting and 254 

foraging sites. Here, we simulated mark-recapture data using tracking routes (34 tracks) to select 255 

planning units associated with nesting beaches and foraging habitat. For this purpose, we 256 

considered foraging and nesting habitat to be planning units where tracks demonstrated sinuosity 257 

(obvious foraging behaviour; McCarthy et al., 2010) and overlapped with our modelled foraging 258 

grounds and our mapped nesting beaches (Fig. 1a). Tracks that did not move across more than 50 259 

planning units were discarded from the analysis as based on typical distances that Mediterranean 260 

loggerhead sea turtles move between nesting and foraging grounds (Zbinden et al., 2008; Schofield 261 

et al., 2013a). This analysis enabled us to allocate connectivity links between the identified foraging 262 

and nesting planning units at either end of the track, assuming non-directional connectivity in 263 

Marxan and ignoring the remaining tracked pathways (Beger et al., 2010b).  264 

 265 

Approach 4 - Tracks  266 

To capture information about the pathways turtles take to cross vast distances and incorporate links 267 

between habitats along the entire journey, we applied a method that incorporates telemetry-derived 268 

movement information into Marxan with Connectivity (Beger et al., 2015). This approach allows 269 

for connectivity strength values to be assigned between and across sites by deriving a connectivity 270 

matrix that connects all planning units along each satellite track (Fig. 2). By symmetrically linking 271 

all planning units along an individual turtle’s pathway, this method allows for spatial dependencies 272 

to exist between places that are not adjacent to each other (Beger et al., 2010b). Planning units that 273 

are travelled through by more than one individual turtle are deemed increasingly important for 274 

migration and contribute more to the connectivity of the solutions. Applying this method, we 275 
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targeted the three habitats (i.e. nesting, inter-nesting, foraging) used by turtles and the connectivity 276 

information provided from our 34 telemetry tracks (see Migration information).  277 

 278 

Comparing planning approaches 279 

We compared the four approaches by calculating Spearman Rank Correlation between the selection 280 

frequency outputs from Marxan, and mapping the resulting spatial conservation priorities. Selection 281 

frequency is the number of times that a planning unit is selected as part of a near-optimal solution in 282 

Marxan. This frequency can be seen as a measure of relative importance, where units selected a 283 

high percentage of times could be considered more valuable than those appearing less frequently in 284 

solutions.  285 

 286 

We then tested how the number of telemetry tracks altered the resulting conservation plan. To 287 

investigate the value of new spatial information for identifying conservation priorities, we randomly 288 

selected an increasing number of tracks from the pool of known tracks; 0 (no tracks), 5, 10, 15, 20, 289 

25, 30, 34 (max). The Marxan analysis was repeated ten times for each group of tracks to account 290 

for variability in the selected tracks. From these solutions we calculated the Spearman rank 291 

correlation of the selection frequency outputs and compared it with that of a solution that includes 292 

all 34 tracks. To further examine the increased inclusion of telemetry tracks, we used a Bray-Curtis 293 

dissimilarity matrix method as described in Linke et al., (2012) and displayed our results in a 294 

dendrogram. This method compared the Marxan best solution outputs (solution with the lowest 295 

objective function score) when run with different numbers of tracks.   296 

 297 

RESULTS  298 

 299 

Conservation priorities that were evident in Approach 4 (Tracks) were not well represented in the 300 

other three approaches. For example, Approach 3 (Mark-Recapture), which had the highest 301 

Spearman rank correlation coefficient of the three approaches when compared with a plan that 302 

incorporates tracking data (Approach 4 – Tracks), indicated that the spatial priority areas from the 303 

plans do not significantly overlap  (rho = 0.08). Thus, results show that links between habitats are 304 

not protected by chance when protecting sea turtle habitat, but need to be separately represented.  305 

 306 

We found that conservation priorities substantially changed as we added different aspects of turtle 307 

information (Fig. 3a; Fig. 4). Despite the weak correlations, approaches that incorporated more 308 

habitat and movement information (e.g. Approach 2 - Habitats rho = -0.12 and Approach 3 - Mark-309 

Recapture rho = -0.23) than a broad species distribution range (Approach 1 - Range rho = -0.08), 310 
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were more successful at capturing migration pathways (comparison with Approach 4 - Tracks) in 311 

the resulting spatial plans. Including movement data can also increase the cost of conservation plans 312 

as movement corridors may mean more area or costly planning units are needed to reach 313 

conservation targets (see Table S5).     314 

 315 

We found that when sample sizes are low, which is often the case with tracking sea turtle and other 316 

large marine animals, even a small number of tracks (~5) can substantially increase the correlation 317 

(rho = 0.6) with plans that include all thirty-four tracks (Fig. 3b). We discovered that the largest 318 

Bray-Curtis dissimilarity was between conservation plans that did include sea turtle tracks and those 319 

that did not (see Group A vs. Group C in Fig. 5). The second largest dissimilarity was between 320 

plans that had a low number of tracks (Group B and Group D in Fig. 5) and a corresponding low 321 

spearman rank correlation (~ rho <0.7 Table S6) when compared with solutions that included ≥20 322 

tracks and resulted in a higher spearman rank correlation (~ rho >0.7; Group C in Fig. 5). This 323 

dissimilarity was due to the low number of tracks (5-15 tracks) included in the plans and because 324 

the spatial variability captured was insufficient for the entire region. Given these results it seems 325 

that plans with >20 tracks were needed to capture the spatial heterogeneity of turtle movement 326 

across the Mediterranean Sea from our given sample size (34 tracks). Thus, plans with over twenty 327 

tracks did not vary considerably to those with 34 tracks.  328 

 329 

DISCUSSION 330 

 331 

 332 

We demonstrated that migratory pathways provide critical information for identifying habitats for 333 

inclusion in spatial planning. We discovered that the inclusion of satellite tracking data makes a 334 

substantial difference to spatial priorities. Moreover, prioritisation without the use of such tracks is 335 

sub-optimal for wide ranging species that move between multiple habitats. 336 

 337 

This study highlights the value of incorporating critical habitat and migration information for 338 

conservation planning of migratory species. Our example system of loggerhead sea turtles in the 339 

Mediterranean Sea showed significant changes in spatial priorities when increasing the amount of 340 

sea turtle information (see four approaches; Fig. 3; Fig. 4). Sea turtle migration was best captured 341 

by incorporating the entire movement track rather than critical habitat information (Approach 2 - 342 

Habitats), species range (Approach 1 – Range), or mark-recapture data (start and end points of 343 

movements; Approach 3 – Mark-Recapture; Fig. 3; Fig. 4). We managed to collate data from 34 sea 344 

turtle tracks in this study and discovered that even a small number of very different tracks (e.g. five) 345 
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can substantially alter conservation priority sites and help capture the known spatial extent of the 346 

migratory life cycle of sea turtles (Fig. 3b; Fig. 5). As new methods emerge, we suggest that future 347 

conservation plans for sea turtles and other migratory species should attempt to incorporate 348 

available habitat and telemetry data where possible. 349 

 350 

Our results suggest that in order to capture sea turtle habitat connectivity in conservation plans, a 351 

good quantity of heterogeneous tracks across the study area is needed (Fig. 5). Our case study 352 

example in the Mediterranean with a limited sample size (34 tracks; Fig. S3), found that >20 sea 353 

turtle tracks that were widely sampled across the study region were able to capture sea turtle 354 

movement. While we stress that more data is always better and higher sample sizes are preferable, 355 

such information is not always readily available and conservation decisions are often made with 356 

scarce data (Bottrill et al., 2008). This study suggests that limited data that is well dispersed across 357 

the study region can actually contribute valuable information to begin conservation planning. Given 358 

our findings that more heterogeneously placed tracks provide the best value of information, future 359 

data collection efforts could be made more useful for conservation by taking a complimentary 360 

sampling approach, and targeting regions that currently have fewer or no tracking studies (e.g. the 361 

eastern Mediterranean; Fig. 1b; Stokes et al., 2015).  362 

 363 

Telemetry studies provide a wealth of connectivity information that is not often applied to 364 

conservation planning. We found that a limited but heterogeneous assemblage of tracks makes a 365 

substantial contribution to improve a spatial conservation plan towards better representing turtles’ 366 

life cycles. This result could perhaps provide better direction for the timely and costly collection of 367 

telemetry data. We recommend that currently available telemetry data be extracted where possible, 368 

perhaps using monetary incentives or intellectual safeguards, and compiled into databases for the 369 

incorporation of species migration information into conservation plans. Established collaborative 370 

frameworks such as the EU, or the IUCN, could be potential starting points. Future work should 371 

aim to carry out value-of-information analyses (e.g. Maxwell et al., 2015; Canessa et al., 2015) in 372 

order to assess the trade-off between investing in the collection of more tracking data, or gaining 373 

new information for improved conservation outcomes. This type of analysis can help inform cost-374 

effective conservation decisions. 375 

 376 

Another challenge in addressing species movements is determining how much connectivity 377 

information is needed. Relying on too few tracks means there is also a risk of over-fitting to a 378 

limited number of data tracks. As an attempt to overcome these challenges, this study used a 379 

calibration method where planning units that contained a track were selected over 50% of the time 380 
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(Fig. S2). The method ensures that connectivity is represented, but it does not necessarily mean that 381 

50% of all migration links are captured in the solution. Determining the level of connectivity that is 382 

needed will largely depend on the species of interest as well as the conservation budget and 383 

conservation objectives. For example, connectivity is especially important for sea turtles that exhibit 384 

high mortality rates within movement pathways (Lewison et al., 2004; Casale, 2011). However, 385 

connectivity may not be particularly useful for species that are less threatened during the 386 

movement/migration phase or those that have large dispersal patterns without clear migration 387 

trajectories. Importantly, the area and cost of a conservation plan are likely to increase as the 388 

importance of connectivity is increased (Table S5). Hence, we suggest that the level of connectivity 389 

required could be pre-determined and a measure of minimum connectivity should be set per species.  390 

 391 

This study demonstrates and tests a method for prioritising the conservation of migratory species. 392 

However, such an approach could be built upon to provide priority areas for sea turtle conservation 393 

in the region. A suitable conservation plan should aim to incorporate all available telemetry studies 394 

(e.g. the 195 tracks identified by Luschi & Casale (2014)), comparable and consistent data for sea 395 

turtle habitat across the Mediterranean region, robust species distribution modelling, as well as the 396 

associated cost of conservation actions (Carwardine et al., 2008). This study has touched on several 397 

of these requirements however a comprehensive data pooling from organisations and scientific 398 

literature is required if priority for the region are to be robustly and transparently determined. Our 399 

method here explored connectivity between nesting and foraging grounds however other 400 

connectivity should be included such as links between breeding sites, wintering habitats and 401 

developmental grounds (Casale et al., 2013; Schofield et al., 2013a). Similarly, migration tracks 402 

should be evaluated by different age classes, sexes and weighted by direction of usage and the 403 

number of individuals that it represents as a proportion of the entire region. 404 

 405 

In summary, this study highlights the value of habitat and movement information to advance the 406 

conservation of migratory species. Our findings on loggerhead sea turtles of the Mediterranean Sea 407 

are expected to provide one example of a broader application for the protection of migratory 408 

species. We recommend future research aims to incorporate and evaluate the value of telemetry 409 

information into conservation plans for migratory species (Runge et al., 2014), especially those that 410 

are threatened, to ensure that mortality is reduced across their whole life cycle. Determining the 411 

value of investing in the collection of more spatial data for species or extracting information from 412 

existing resources can help inform spatial planning more immediately. When there is only a short 413 

widow of time to act for threatened species it is critical that decision makers invest and act in areas 414 

which will be most effective at ensuring species persistence (Bottrill et al., 2008).  415 
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 775 

Table S1. Nesting habitat: A total of 131 loggerhead (Caretta caretta) nesting beaches were 776 

recorded from the following literature. 777 

Table S2. Foraging habitat: References for data extracted from EurOBIS (2014), scientific literature 778 

and seaturtle.org (2013) to collect point data (9058 point locations) on sea turtles when 779 

foraging.   780 

Table S3. Environmental Variables (Variables included in final model marked with *) 781 

Table S4. Migration information: A total of 34 sea turtle tracks were obtained via EurOBIS (2014) 782 

and seaturtle.org (2013). All data extracted from these sources is reference below.   783 

Table S5. The opportunity cost of each scenario (cost is assumed equal for each planning unit). The 784 

Connectivity Strength Modifier (CSM; Beger et al., 2010b) was calibrated to 50 (Fig. 785 

S1). All values in the table represent the average value when run in Marxan 1000 times.  786 

The “number of planning units” indicates the number of 10 x 10 km units needed for 787 

reservation to meet biodiversity targets.  788 

Table S6. Spearman rank correlation coefficient when running conservation plans in Marxan with 789 

different numbers of sea turtle tracks (0, 5, 10, 15, 20, 25, 30, 34). The selection 790 

frequency outputs from Marxan were compared against a solution with all 34 tracks 791 

included. These values indicate the similarity between spatial priorities in the solutions. 792 

We tested the number of tracks with 10 repetitions to test for variation between selected 793 

tracks in our random samples (indicated by a letter).  794 

Figure S1. Map of 9058 data points (data supplied by reference Table S2) used to construct the 795 

foraging habitat model as described in full detail in Appendix S1.  796 

Figure S2. Graphs showing the trade-off curve of the connectivity strength modifier (CSM) with 797 

the number of connected planning units (those containing a sea turtle track). By assessing 798 

a trade-off curve with the number of planning units that overlap with tracking data we 799 

could determine the appropriate Connectivity Strength Modifier (CSM - Beger et al., 800 

2010b). We aimed for planning units containing tracks to be selected >50% of the time 801 

when run 1000 times in Marxan. We used a CSM of 50 (equal cost per planning unit). 802 

Figure S3. Graphs showing the length (km) of each of the 34 tracks used in this study. See Table 803 

S4 for the sources of the 34 tracks.  804 

Appendix S1. Sea turtle foraging distribution model created using MaxEnt.  805 

Appendix S2. Setting conservation targets 806 

Appendix S3. Information for each sea turtle track. The start and end country that the tracks were 807 

found, starting positions were usually nesting sites. Further information is unable to be 808 

given due to data privacy.  809 
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TABLES 1121 

 1122 

Table 1. Summary of the planning approaches, including increasing amounts of data and 1123 

information on the distribution and movement of sea turtles. Each plan aims to derive conservation 1124 

priorities for loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, and uses systematic 1125 

conservation decision tool Marxan.  1126 

 1127 

 1128 

Approach for sea turtles 

conservation planning  

Targets  How connectivity was 

incorporated 

1. Range The distribution of sea turtles as a 

whole (not per habitat type) 

overall target = 20%  

Not at all 

2. Habitats Nesting = 60% 

Inter-nesting habitat = 40% 

Foraging habitat = 20% 

Targets for habitats used 

in different life-stages 

3. Mark-Recapture  

 

Nesting = 60% 

Inter-nesting habitat = 40% 

Foraging habitat = 20% 

Connections between the 

priority habitats 

4.   Tracks 

 

Nesting = 60% 

Inter-nesting habitat = 40% 

Foraging habitat = 20% 

Connections between 

each track is prioritized 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 
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FIGURE LEGEND 1150 

 1151 

 1152 

Figure 1                        1153 

a) Three types of loggerhead sea turtle (Caretta caretta) habitat: nesting habitat, inter-nesting 1154 

habitat and foraging habitat. b) Map of the Mediterranean Sea divided by geographical sub-areas as 1155 

determined by the General Fisheries Commission of the Mediterranean Sea (GSCM). The total 1156 

number of sea turtles tracks that cross each sub area were calculated and represented in this map. 1157 

Individual tracks were unable to be displayed due to data confidentially reasons, see Appendix S2 1158 

for further information on data sources.  1159 

 1160 

Figure 2. Assignment of connectivity values derived from sea turtle telemetry paths. The squares 1161 

correspond to planning units of this study (10 x 10 km; consistent with EU guidelines (Directive 1162 

2007/2/EC) and other large-scale regional planning studies (Levin et al., 2013; Mazor et al., 2013; 1163 

Mazor et al., 2014) and result in a connectivity matrix.  1164 

 1165 

Figure 3. a) Spearman rank correlation of selection frequency outputs, comparing four conservation 1166 

plans with increasing data complexity on sea turtle movement and habitat: Approach 1 - single 1167 

species distribution range, Approach 2 - habitat differentiation (nesting, inter-nesting, foraging), 1168 

Approach 3 – three habitat types and movement information from mark-recapture data, and 1169 

Approach 4 – three habitat types and movement information from 34 sea turtle tracks.  b) Graph of 1170 

the average Spearman rank correlation of selection frequency outputs, comparing scenarios with a 1171 

subset of tracks vs. scenarios with all 34 tracks. The standard deviation is shown for each scenario 1172 

(calculated from ten repeated Marxan runs). This analysis used an equal cost for each planning unit. 1173 

 1174 

Figure 4. Maps of four conservation plans in the Mediterranean Sea with increasing data 1175 

complexity for sea turtle movement: Approach 1 - Range, Approach 2 - Habitats (nesting, inter-1176 

nesting, foraging), Approach 3 – Mark-Recapture data, and Approach 4 – Tracks (34 telemetry 1177 

tracks). Priority areas are those planning units that have a high percentage of selection (selection 1178 

frequency).  1179 

 1180 

Figure 5. Dendrogram comparing the dissimilarity of solutions (Bray-Curtis dissimilarity matrix 1181 

method; Linke et al., 2012) with increasing numbers of tracks. Each node on the dendrogram 1182 

represents the number of tracks (0, 5, 10, 15, 20, 25, 30, and 34 tracks) used in the analysis and the 1183 

repetition letter (each number of tracks was run 10 times each as represented by letters a – j). These 1184 
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letters and numbers link to Supporting Information Table S6. Four groups were identified as 1185 

denoted by cycles and letters A, B, C, D. The main split between solutions is between analyses 1186 

without tracks and those that include tracks (Group A and B). 1187 
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